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WEIGHT DROP MODELS OF TRAUMATIC BRAIN INJURY
IN RATS ASSOCIATED WITH COGNITIVE DISORDERS
AND GLIAL SCAR FORMATION: A SYSTEMATIC REVIEW
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Abstract. Objective: Traumatic brain injury (TBI) causes persistent cognitive disorders
due to glial scar formation, inhibiting axonal regeneration. Targeting glial scar formation
may improve TBl-related cognitive disorders, and require standardized animal models for
research. This review aims to identify a weight drop model inducing cognitive disorders
and glial scar formation in rats with TBI, supporting further investigations. Methods: A
literature search using PubMed, Science Direct, and ProQuest databases identified rel-
evant articles. Inclusion criteria were randomized controlled trials published in English,
in full text, between 2012 and 2022. Review articles and abstracts were excluded. Key
words were chosen via the P.I.C.O framework, and article quality was assessed using the
Systematic Review Center for Laboratory Animal Experimentation guideline by three re-
viewers. Results: Among 1,042 articles, 32 studies demonstrated cognitive disorders in
rats using the weight drop model. Three studies explored glial scar formation and found
that two weight drop methods were associated with cognitive disorders and glial scar for-
mation in rats with TBI: applying a 10-gram load from a 5 cm height to the exposed heads
of Sprague—Dawley rats or using a 200 gram weight from a 2.5 cm height to the exposed
skulls of mice. Conclusion: Two weight drop model methods were found to induce the
formation of glial scar, which consequently resulted in persistent cognitive disorders.
These discoveries provide significant insights for future research on potential interven-
tions aimed at preventing glial scar formation and improving cognitive disturbances in
TBI. Clinically, this research holds significant promise for informing treatment strategies
in TBI patients by identifying targets to prevent or reverse glial scar formation. Such in-
terventions could reduce cognitive decline, improve rehabilitation outcomes, and support
the restoration of brain function. Early therapeutic approaches targeting glial scars may
enable timely and effective strategies to minimize permanent neurological damage and
enhance recovery in TBI patients.
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INTRODUCTION

Traumatic brain injury (TBI) has a global inci-
dence of approximately 50 million cases an-
nually, with an economic cost of US$ 400 bil-
lion. Traumatic brain injury is a major cause of death
and disability among young, productive individuals,
creating a significant challenge for healthcare deliv-
ery systems in low and middle-income countries [1,
2]. According to the World Health Organization, ap-
proximately 1-2% of the population, or around 5 million
people, live with post-TBI disabilities, with a majority of
them suffering from cognitive disorders. This results
in changes in patients’ cognitive, behavioral, physi-
cal, and psychological disorders. Approximately 15-
30% of post-TBI patients experience cognitive decline
that worsens over time [3]. A study in South Carolina
showed a 43% incidence of disability, while data from
the Trauma Referral Center in Norway indicated that
53% of patients recovered well, though permanent
disabilities developed up to 10-20 years after TBI [4].

One contributing factor to persistent functional dis-
orders following TBI is the formation of glial scars
originating from reactive astrocytes. This process is
believed to impede axonal regeneration and hinder
TBI recovery [5]. This is further exacerbated by the
inadequate intrinsic ability of neuronal cells in the
central nervous system (CNS) to repair injured ax-
ons, resulting in regenerative failure [6].

Over the past three decades, numerous animal mod-
els simulating various aspects of human TBI have
been developed to study its pathophysiology and
identify potential treatments. The most commonly
used TBI models are the weight drop model, fluid
percussion injury, and controlled cortical impact inju-
ry [7]. Among these, the weight drop model has been
widely employed since the 1990s due to its simplicity,
affordability, and ability to mimic diffuse brain injuries
characterized by axonal damage [8-10].

Although the weight drop model has been extensively
utilized, there is no consensus on the optimal weight

drop model, which induces both glial scar formation
and cognitive impairments. Therefore, we conducted a
systematic review to identify the most effective weight
drop model that can induce glial scar formation and
cognitive disorders in rats with TBI. Our study focused
solely on TBI cases and provided a detailed overview
of the weight drop model techniques that can lead to
glial scar formation and cognitive disorders in rat ani-
mal models. This finding is expected to support further
research on treatment interventions to improve cogni-
tive disorders by preventing glial scar formation in TBI,
both in animal models and eventually in humans.

METHODS

Data Collection

This systematic review has met the minimum stan-
dards of the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines [11].
We also evaluated the quality of our systematic re-
view using AMSTAR-2 criteria [12]. We do not attach a
PROSPERQO registration number because this review
has no direct impact on human health, and our review
method is not directly related to human health. This
review systematically searched for relevant articles in
PubMed (PMC Central, MEDLINE), Science Direct,
and ProQuest due to their extensive collection of open-
access medical articles. The keywords used in this re-
view were developed based on the P.I.C.O framework
(Table 1). Each keyword was entered into each data-
base with the joining word “AND” to retrieve relevant lit-
erature. The search strategy included a combination of
medical subject headings (MeSH terms) and text words
using Boolean operators: (Rat OR mouse OR mice)
AND (“weight drop” OR “weight-drop”) AND (“traumatic
brain injury” OR “brain injury” OR TBI) AND (“cognitive
behavior” OR “cognitive function” OR “cognitive pro-
cesses” OR “glial scar” OR astrogliosis). To avoid bias
and eliminate confounding factors, only articles with
the specified keywords were considered for review to
investigate the association between the weight drop
model and glial scar formation, as well as cognitive

Table 1. P.I.C.O. framework and study selection criteria

P.1C.O

Exclusion Criteria

Inclusion Criteria

Population: Mice that received weight drop treatment.

Human subjects with TBI; In vitro study | Rats

Intervention: Weight drop models performed on rats

to establish mild, moderate, or severe brain injury. cussion Injury

Controlled Cortical Impact; Fluid Per-

Weight drop model

Repetitive TBI

Mild TBI; Moderate TBI; Severe TBI

Comparator: This review does not use a comparison. | NA

NA

Outcomes: The results of the weight drop model in
rats are cognitive impairment and glial scar formation.

Affective behavior; Motoric behavior

Cognitive behavior; Glial scar; Astrogliosis

Acronyms: TBI: Traumatic Brain Injury; NA: Not Available.
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disorders. Articles meeting the inclusion criteria, which
included randomized controlled trials (RCTs) published
between January 1, 2012, and December 31, 2022,
available in full text, and written in English, underwent
further evaluation. Review articles, abstract-only publi-
cations, and non-English articles were excluded from
the review process. The Mendeley reference manager
was used to manage the search results.

Data Selection

The article search involved three stages: identifica-
tion, screening, and eligibility analysis. ldentification
was performed by inputting keywords into three da-
tabases from January 5 to January 30, 2023. All ar-
ticles obtained from these databases were collected
in Microsoft Excel and Mendeley, and duplicates were
removed by sorting alphabetically and reviewing the
tittes. The remaining articles were screened based
on their titles and abstracts to identify those that met
the pre-defined inclusion criteria. Full-text articles that
passed the screening stage were read to assess their
relevance and suitability for this research purpose. Ar-
ticles that did not provide relevant information to ad-
dress the research objectives were excluded, while the
relevant articles were thoroughly and systematically
reviewed. Each review and data extraction process
was performed by three reviewers objectively. Any
disagreements were resolved by involving a fourth re-
viewer. The PRISMA flow diagram illustrates the pro-
cess and outcomes of this systematic review (Fig. 1).

Quality Assessment

The Risk of Bias (RoB) was evaluated using the
Systematic Review Center for Laboratory Animal

Experimentation (SYRCLE) guideline, which is an
adaptation of the Cochrane RoB tool designed to
determine bias specifically in animal intervention
studies [13]. This tool consists of six types of bias
with a total of ten assessment items, including se-
lection bias (three items), performance bias (two
items), detection bias (two items), attrition bias
(one item), reporting bias (one item), and other
biases (one item). During the assessment, items
with low risk of bias are marked with a green sym-
bol, those with high risk of bias with a red symbol,
and articles with unclear risk of bias with a yellow
symbol. Any disagreements in scoring are resolved
through discussions and consensus. The assess-
ment results of the 10 items are presented using
Revman 5.4.1 in Fig. 2.

Data Extraction

To aid in understanding the relationship between the
literature results and established research objective,
important information from each reviewed article
was presented in tabular form. The extracted data
included: (1) the author’s name and year of publica-
tion; (2) type of research; (3) rodent type used in the
study (strain, body weight, and age); (4) weight drop
method; (5) location of weight drops; (6) weight and
load specifications; (7) height of the load dropped;
(8) decapitation time of rats; (9) time of glial scar
formation; and (10) the results of the cognitive test.
The optimal weight drop method that could cause
cognitive disorders and glial scar formation in rats
with brain injuries can be identified through this brief
presentation.
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RESULTS

Article Search Results

The systematic search in the three databases resulted
in 1,042 articles published between January 1, 2012,
and December 31, 2022, with 57 duplicate articles. Fol-
lowing the exclusion of duplicate articles from the re-
view process, titles and abstracts from 985 articles were
screened based on predetermined inclusion criteria, re-
sulting in 561 articles meeting the criteria and additional
424 articles being excluded due to their accomplishment
in the form of review articles with no abstract or results
available. Further, full-text screening was carried out on
561 articles to assess their feasibility and relevance to the
research objectives, resulting in 529 articles, which were
excluded from the review process because of inappro-
priate and incomplete information. Therefore, 32 articles
were obtained with complete and relevant information for
the topic of this review. The PRISMA flow diagram of the
study selection process is presented in Fig. 1.

Reviewing the Studies

Rodent Type

Based on rodent type, out of the 32 obtained articles,
24 studies used mice, and 8 studies used rats. Male
Institute of Cancer Research (ICR) mice aged 6-8
weeks weighing 25-40 grams were the most com-
monly used mouse specifications (11 mice). This re-
view also found C57BL/6 (6 mice), Tg-AD (2 mice),
adult mice (2 mice), C57BL66N (1 mouse), Swiss al-
bino mice (1 mouse), and CD1 (1 mouse). In contrast,
this review only found one type of rat, which was male
Sprague Dawley rats aged 7-12 weeks, weighing 220-
350 grams. Rats had a higher body weight than mice,
although there was no significant difference in the age
of the mice when given the treatment (Table 2).

Weight Drop Method

In this review, it can be concluded that the weight drop
methods used on the heads of mice were intact skin,
intact skin + helmet, exposed skull, exposed skull + hel-
met, exposed dura, and exposed brain. In the 32 studies
reviewed, the method of dropping weights on the heads
of mice with intact skin was used in 13 studies, intact skin
+ helmet in 1 study, exposed skull in 9 studies, exposed
skull + helmet in 1 study, exposed dura in 5 studies, and
exposed brain in 2 studies. The intact skin method is the
most commonly used among the six methods, involv-
ing the direct impact of a load on the rat's head. This
method can prevent surgical wound infections but may
introduce biases due to variations in hair, skin, and skull
thickness in rats. The intact skin method with a helmet
aims to simulate TBI as it occurs in human accident
cases. In the exposed skull method, the load is applied

to an exposed area of the skull, reducing biases related
to skin and hair thickness but carrying a risk of infection.
In the exposed dura method, the load is dropped on a
rat's head after removing a portion of the skull, reduc-
ing variations in skin and skull thickness. Meanwhile, in
the exposed brain method, the brain’s surface is directly
exposed before applying the load, allowing for easier vi-
sual confirmation of bruising during treatment, resulting
in focal brain damage on the surface and promoting bet-
ter recovery in experimental animals.

Weight Drop Location

The right side of the brain is preferred over the left for
load dropping as it plays a significant role in cognitive
control in humans. Damage to the right side of the brain
can result in cognitive problems, such as impaired mem-
ory, attention problems, poor reasoning, and dysprosody.

Weight and Height of the Weight Drop Model

Since mice and rats have significant differences in body
weight, the average weight of the load and the height of
the drop in the weight drop model can be differentiated
based on the type of rodent. The results of this system-
atic review indicated that out of 24 studies using mice,
13 studies placed the load on the heads of mice with
intact skin, 1 study used intact skin + helmet, 8 studies
used exposed skulls, and 1 study used exposed skull +
helmet, while 1 study did not specify the dropping meth-
od. For intact skins, weights typically ranged from 10
to 500 grams, with 30 grams as the most used weight.
The load was dropped from varying heights, typically
between 1.5 cm and 100 cm, with 80 cm as the most
widely used height. Similarly, in the study by Shishido et
al. [14] a weight of 30 grams and a height of 80 cm were
used for mice with intact skin + helmet.

The weight of loads used for mice with exposed skulls
varied between 30 to 333 grams, with 30 grams as
the most used weight. The height of the dropping
load ranged from 2 to 80 cm, with 80 cm as the most
widely used height. The weight and height combina-
tions in mice with exposed skull + helmet were also 30
grams and 80 cm. In 8 studies using Sprague Dawley
rats, only 1 study placed the weight on the heads of
the rats with exposed skulls, on exposed dura in 5
studies, and on exposed brain in 2 studies. Yu et al.
[15] performed the exposed skull method by dropping
a load weighing 40 grams from a height of 20 cm.
In the exposed dura method, the two combinations
of weight and height widely used were a weight of
40 grams with a height of 25 cm and a weight of 50
grams with a height of 30 cm [16,17]. Two studies
using the exposed brain method dropped 10 grams
of weight on rats’ heads from a height of 5 cm [18],
whereas Luo et al. [19] used a weight of 10 grams
without specifying the height of the dropped weight.
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Decapitation Time

This review sought information on the decapitation
time of rats to establish the length of the window pe-
riod, which can be utilized for research on neuropro-
tectant medication in brain injury and observing the
progression of glial scar formation or astrogliosis. In a
study by Luo et al. [19], weight drops were performed
on exposed brain and decapitated the heads of rats
on days 3, 7, and 14 following TBI. This model con-
firmed the glial scar formation on day 14 after brain
injury. Chen et al. [18] used the same method, de-
capitating the rats at 24 hours and 6 weeks post-TBI,
and demonstrated the presence of astrogliosis at
both time points. In contrast to the two previous stud-
ies, Xu et al. [20] used the exposed skull method and
decapitated rats to prove the formation of astrogliosis
14 days after brain injury. In the weight drop model,
rats could survive up to 3 weeks after the brain injury
treatment, and the average formation of glial scars or
astrogliosis began 14 days after treatment.

Cognitive Test

Cognitive, affective, and motor disorders can mani-
fest after neurological disorders following brain hem-
orrhage in rodents. In the 32 articles reviewed, the
Novel Object Recognition (NOR), Y-Maze, and Mor-
ris Water Maze (MWM) tests were used to assess
cognitive disorders. The NOR was the most widely
used tool (20 studies), followed by Y-Maze (14 stud-
ies) and MWM (11 studies). Based on the NOR test
results, cognitive disorders were identified earliest on
the first day after brain injury treatment. Meanwhile,
the longest period of cognitive disorders following
brain injury treatment was observed at 6 weeks,
as evidenced in the studies by Schreiber et al. [21]
and Stetter et al. [22]. In contrast to the results of
the NOR test, the Y-Maze assessment was found to
identify cognitive disorders more quickly, starting 12
hours after brain injury [23], and the longest duration
of cognitive disorders occurred at 33 days after injury
treatment [24]. In the study by Li et al. [25] the MWM
test showed the fastest decline in cognitive function
on the first day after injury treatment, while Lesniak
et al. [26] found that the longest duration of cognitive
disorders was the 30th day after injury treatment.

Quality Assessment Results

The risk of bias in 32 articles reviewed was assessed
using the Systematic Review Center for Laboratory
animal Experimentation (SYRCLE) tool. Quality as-
sessment was performed on ten bias items, and the
results will be displayed in a table using red, yellow,
or green symbols. In the selection bias assessment,
only 1 article provided an explanation of the alloca-
tion sequence for rats, while 31 articles described

the similarity of basic characteristics in each sample
group, and 1 article provided information on the alloca-
tion concealment method for animals. Randomization
of animals was reported in 10 articles, and blinding of
personnel and researchers to mask the received in-
terventions for each experimental animal group was
reported in 7 articles. The bias detection assessment
found that 5 articles applied animal randomization
principles during intervention outcome assessment,
while 10 articles blinded the analysts to the results dur-
ing the research analysis process. A total of 6 articles
reported complete research data, indicating low risk
of bias, while 3 articles were found to have low risk of
bias in reporting selective results. All reviewed articles
had low risk of bias for other items not explained in
this tool. Among the 10 indicators for bias risk assess-
ment, most articles showed low risk of bias in basic
characteristics and other bias indicators, but most did
not provide sufficient information on sequence gen-
eration and allocation concealment indicators, making
the bias risk uncertain. The complete assessment of
the 10 SYRCLE items is shown in Fig. 2.

DISCUSSION

This systematic review identified 32 articles discuss-
ing weight drop models that cause cognitive disor-
ders, three of which described cognitive disorders
accompanied by glial scar or astrogliosis formation.
Among these articles, two weight drop methods were
found to cause cognitive disorders and glial scar for-
mation, namely weight drop with exposed skull [20]
and exposed brain [18, 28].

The weight drop model on the brain with exposed
skull was performed on adult male mice weighing
28 to 32 grams. A weight of 200 grams was dropped
from a height of 2.5 cm on the left lateral 1.5 mm
from the midline in the middle coronal plane of the
brain. The mice that received the weight drop treat-
ment survived for 28 days, and Y-maze test evalua-
tion confirmed cognitive disorder on days 7 and 28
post-TBI. On day 14 post-TBI, upregulation of GFAP
expression was observed, indicating astrogliosis.
This method offers several advantages, including
providing homogeneous brain damage caused by the
dropped weight on the head, minimizing variability in
fur and skin thickness, offering an easier weight drop
treatment compared to the brain exposed method,
requiring less time, using simple equipment, and
having a lower risk of experimental animal death.
However, determining the occurrence of brain contu-
sion during treatment as a direct condition for glial
scar formation is difficult, requiring decapitation to
observe the process [9, 10].
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Fig. 2. Risk of Bias (RoB) assessment results using
SYRCLE Tools

The weight drop model with exposed brain was per-
formed on adult female Sprague Dawley rats weighing
220 to 250 grams. In this method, a weight of 10 grams
was dropped from a height of 5 cm onto the right side of

the brain. In the study by Chen et al. [18] rats were ob-
served for 6 weeks, and GFAP staining was performed
in the cortex, hippocampus, and thalamus areas, re-
vealing an increase in GFAP intensity as a marker
of astrogliosis in all three locations at 24 hours and 6
weeks post-TBI. Meanwhile, in the study of Luo et al.
[19] rats survived for 14 days, and immunofluorescent
GFAP staining was performed, confirming the forma-
tion of glial scar on day 14 post-TBI. Using the exposed
brain method, experimental rats exhibited significant
cognitive deficits at 24 hours and 1 week post-TBI, as
assessed by the NOR test, and at 5 days post-TBI, as
assessed by the MWM test. The exposed brain method
causes the most homogeneous brain damage from the
dropped weight, compared to other weight drop meth-
ods, as it is not affected by fur variability, skin thickness,
bone thickness, and dura mater. The advantage of this
method is that the occurrence of brain contusion can be
visually confirmed during treatment, which can better
ensure the formation of glial scar. However, the disad-
vantage is that the weight drop treatment is more chal-
lenging and requires an expert to perform trepanation
on the rat’s head, a longer time is required, more equip-
ment is needed, and there is a higher risk of experimen-
tal animal mortality.

From the 32 articles reviewed, only 3 studies explicitly dis-
cussed the formation of glial scars or astrogliosis. How-
ever, the lack of agreement on the definition of a glial scar
may introduce bias in this study. Sofroniew & Vinters [27]
provided a detailed definition of the glial scar, identifying
astrocyte cells as the main form of a glial scar. Following
brain injury, astrocytes turn reactive, known as reactive
astrogliosis. This process is not a simple present-or-no
phenomenon but rather a series of subtle graded chang-
es that occur in a context-dependent manner and are
governed by specific signaling events. These changes
range from reversible alteration in gene expression and
cell hypertrophy with preservation of the cell environment
and tissue structure to long-lasting scar formation with
rearrangement of tissue structure. Although the severity
of reactive astrogliosis changes smoothly and becomes
one unit, for description and classification purposes, So-
froniew & Vinters [27] proposed three broad categories:
mild to moderate reactive astrogliosis, severe diffuse re-
active astrogliosis, and severe reactive astrogliosis with
glial scar formation.

This systematic review has several limitations, includ-
ing the limited number of articles and the high risk
of bias in the articles reviewed. Since the search for
articles in this systematic review was carried out on
PubMed (PMC Central, MEDLINE), Science Direct,
and ProQuest, the results of this review may not ac-
curately represent the findings of articles published in
other databases. The majority of articles had a low risk
of bias in terms of baseline characteristics and other
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bias indicators; some articles lacked complete infor-
mation on the indicators of sequence generation and
allocation collaboration, making the risk of bias ambig-
uous. Due to space constraints, many articles did not
fully provide detailed information on the experimen-
tal research methodology on experimental animals,
which could have resulted in an ambiguous risk of bias
assessment for certain indicators on the SYRCLE tool.
From this study, there is currently no consensus on
the definition of glial scar, which may introduce bias
in the interpretation of results. This limitation is impor-
tant to consider when evaluating the robustness of the
findings and highlights the need for further research to
support and standardize weight drop models for study-
ing cognitive disorders and glial scar formation.

Based on the results of this review, further research
is needed to support the findings on the weight drop
model in inducing cognitive disorders and glial scar
formation. The development of the weight drop model
needs to standardize the methods used to confirm the
formation of glial scar, which is fulfilled through GFAP
staining, and to assess cognitive disorder using the
NOR test. This systematic review can serve as a basis
for future research in creating a standardized weight
drop model for TBI that is associated with the forma-
tion of glial scar and cognitive disorders, which could
facilitate the search for new drugs, which inhibit glial
scar formation in animal models with TBI.

This study has significant clinical implications for the
prevention and management of cognitive impairments
following TBI. Glial scar formation is a major barrier to
axonal regeneration and recovery, and strategies tar-
geting its inhibition could improve cognitive outcomes in
TBI patients by promoting neuronal repair. A standard-
ized weight drop model provides a valuable preclinical
tool for testing pharmacological agents or therapeutic
strategies aimed at preventing or reversing glial scar
formation. Clinically, these findings could inform treat-
ment protocols to reduce cognitive decline, enhance re-
habilitation outcomes, and restore brain function. Early
interventions targeting glial scars may offer a timely and
effective approach to mitigate permanent neurological
damage in TBI patients.

CONCLUSION

Currently, there is no established standard method
for the weight drop model in TBI, which induces glial
scar formation and cognitive disorder, due to the lim-
ited available literature and variations in the types and
weights of rats, which affect the weight and height of the
dropped load. Two weight drop models have been used
to induce brain injury models associated with the forma-
tion of glial scars and cognitive disorders. The first mod-
el involves the exposed skull method on mice, where a

weight of 200 grams is dropped from a height of 2.5 cm.
The second model is the exposed brain method on rats,
where a weight of 10 grams is dropped from a height
of 5 cm. Following the weight drop treatment, the rats
have a survival period of 4 to 6 weeks, which provides a
sufficient window period for research into further treat-
ments, especially those related to the treatment of glial
scars and cognitive disorders.
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