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CHLORIDE CHANNELS IN AMYOTROPHIC  
LATERAL SCLEROSIS
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Abstract. In amyotrophic lateral sclerosis (ALS), human postmortem transcriptomics re-
veals a consistent shift, with downregulation of neuronal genes and upregulation of glial 

and ion transport, particularly chloride channels and transporters that set the neuronal 
chloride gradient, are mechanistically relevant to motor system vulnerability. This review 

-
ride channels and related transporters in ALS. The evidence converges on several key 

in glycinergic inhibition linked to reduced GLRA1 expression and synaptic loss. In skel-

-

ER-resident anion channel CLCC1 is now implicated through both rare genetic variants 

and neurodegeneration. Finally, downregulation of the KCC2 co-transporter in vulnerable 
-

tential, impairing fast synaptic inhibition. Although coding mutations in chloride channel 
genes are rare, dysregulation of their expression and function converges on core ALS 

readouts to clarify their therapeutic potential.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a multi-
factorial neurodegenerative disorder in which 

glutamate-mediated excitotoxicity, mitochondrial 

converge to produce progressive upper- and lower- 
motor-neuron degeneration [1]. Because the polarity 
and strength of fast synaptic inhibition depend on the 
neuronal chloride gradient set by KCC2 and NKCC1, 
disturbances of chloride channels and transporters 
can convert normally hyperpolarizing GABA/glycine 

excitability and rendering motoneurons more suscep-
tible to glutamatergic injury [2, 3]. Human postmor-
tem transcriptomics from sporadic ALS (sALS) shows 
a consistent polarity: neuronal genes are preferen-

grams upregulated in ventral horns, while microarray 

ease backdrop in which inhibitory synapses and ion 

are mechanistically relevant to motor-system vulner-
ability [4, 5]. Against this multifactorial backdrop, hu-
man postmortem transcriptomics consistently show 
downregulation of neuronal programs with reciprocal 

spinal cord, providing the disease context in which 
inhibitory synapses and chloride handling merit fo-
cused scrutiny [4]. For clarity on cohorts, the ventral-

rior-horn/frontal-cortex microarray by Andrés-Benito 
et al. analyzed independent donor sets; "paired re-
gions" in the latter refer to the same donors within 
that microarray study, not to the D’Erchia cohort [4, 
5]. Because the strength and polarity of fast inhibi-
tory transmission in spinal motor circuits depend on 

aptic inputs but are ultimately constrained by intra-
cellular chloride set by KCC2/NKCC1, we consider 
both channel and transporter mechanisms alongside 

glia-up polarity, while most chloride channel and co-
transporter claims still rest on SOD1 mice or in vitro
systems, as discussed below [6-8]. 

We focus on chloride channels and co-transporters 
(Figure 1) because convergent human postmortem 
transcriptomics demonstrate a neuron-down/glia-up 
polarity with suppression of inhibitory programs, and 
complementary work shows early degeneration of 
inhibitory interneurons and pervasive cortical hyper-
excitability that together implicate impaired chloride-
dependent inhibition in ALS pathophysiology [9, 10]. 
In line with current understanding, we frame chloride/
polarity imbalance as a disease-amplifying mecha-

while highlighting where human-anchored 
data are strongest and where evidence re-
mains preclinical. 

NEURONAL COMPARTMENT: CHLORIDE 
CHANNELS, CO-TRANSPORTERS 

AND INHIBITORY SYNAPSES

GLRA1 (Glycine Receptor Alpha-1) and 
Glycinergic Inhibition
Electrophysiology in embryonic spinal mo-
toneurons from SOD1 G93A mice showed 
smaller glycine-evoked current densities 
and reduced glycinergic miniature IPSC 
amplitudes versus nontransgenic controls, 
with GABAergic currents unchanged un-

dependent anatomy in the same model re-
vealed presymptomatic loss of glycinergic 
boutons onto motoneurons, with relative 

Fig. 1. Schematic overview of chloride-pathway disturbances across 
motoneurons, skeletal muscle and glial compartments in ALS
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sparing of GABAergic innervation; subtype analyses 

abundance and synaptic input in SOD1 ALS mice; 

limited to this date. Consistent with network-level 
remodelling beyond receptor abundance, in vivo cir-
cuit mapping in SOD1

centered selective vulnerability described here [12].

of spinal motoneurons at presymptomatic stages, a 
structural synaptic change preceding motoneuron 
degeneration. This presymptomatic loss was specif-
ic to glycinergic inputs, with GABAergic innervation 
comparatively spared in that dataset [13]. Subtype 

-
as medium-sized motoneurons did not show altered 
glycinergic currents in the same embryonic G93A-
SOD1
the motoneuron pool [14]. 

Consistent with broader inhibitory-circuit alterations 
-

cits in SOD1 G93A mice paralleled by preferential 

and human postmortem spinal-cord studies identify 
inhibitory-pathway transcript perturbations within the 
broader neuron-down/glia-up polarity, with subunit-
level directionality varying across cohorts [4, 5, 15].

Neuronal Chloride Cotransporters (KCC2/NKCC1) 
and Inhibitory Reversal Potential
Because inhibitory strength hinges on intracel-

-
-

glossal motoneurons of SOD1 G93A mice, KCC2 

late presymptomatic stages onward, while NKCC1 

SOD1 motoneurons shows depolarized E_GABA/
Gly accompanied by slower inhibitory current de-
cay consistent with compensation under reduced 
KCC2 function [6]. Emerging, but still limited, trans-
lational work suggests KCC2 loss may feature in 

remains sparse and variable across regions and 

a 2023 preprint reports reduced KCC2 membrane 
levels in postmortem motor cortex in ALS, whereas 

-
nal ventral horn is still lacking; we therefore label 
cortical KCC2 data as preprint-level and keep spinal 
conclusions restricted to animal work [16].

TMEM16F (ANO6) at Motoneuron C-Boutons 
and ALS
TMEM16F was localized to postsynaptic clus-
ters facing presynaptic cholinergic C-boutons on 

-
cordings showed that TMEM16F underlies a Ca2+-
activated chloride conductance in these neurons [7]. 
Genetic disruption of Tmem16f increased the recruit-

motor tasks, demonstrating a role for this channel in 
modulating motoneuron excitability during behavior. 

In an ALS context, loss of TMEM16F function in 
SOD1
an activity-dependent early stress marker, reduced 
muscle denervation, delayed disease onset, and pre-

-
lation on ALS progression metrics in that model [7]. 
Human postmortem evidence on C-bouton number 
or morphology is limited: a small late-1990s series 
reported fewer cholinergic synapses on ALS moto-
neurons, while rodent studies variably report enlarge-
ment, stability, or loss depending on stage and sex, 
consistent with both compensatory and pathogenic 
interpretations [17, 18]. Accordingly, we interpret 
C-bouton changes as potentially stage-, sex-, and 
model-dependent rather than uniformly pathogenic in 

-
titation still limited to small cohorts such as the ones 
mentioned above.

ANO1 (TMEM16A) Signalling in ALS Motor 
Neurons

demonstrated in vitro in motor-neuron models rather 
than in vivo ALS, and the experiments do not estab-
lish adult human spinal motor-neuron expression of 
ANO1. In an adult single-nucleus atlas with spatial 
validation, TMEM16A/ANO1 is not highlighted in 
cholinergic motor-neuron clusters, and a developing-
human single-cell atlas characterizes embryonic/

-

should be framed as biological plausibility rather 
than a transferable mechanism for human ALS until 
animal or human validation emerges, despite estab-

cell systems [20] .
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Outside ALS, but relevant to the mechanism, ANO1 
has been shown to form functional complexes with 

-
ling modules in mammalian cells. This supports, with-

axis reported in ALS cellular models [21]. 

For ANO1, ALS motor neuron models show increased 
-

KII activation upon ANO1 action, while non-ALS cell 
systems independently support a physical and func-

-
orating the mechanistic axis described in ALS cellular 
data [8]. Accordingly, in Table 1, we label ANO1 as 
"Cellular models only" to avoid over-signalling clinical 

-
mation emerges.

CLCC1 as an ER Anion Channel Implicated in ALS
-

bilayers forms an anion conductance; ALS-linked 
variants reduce channel currents; and motor-neu-

stress and progressive neurodegeneration, estab-

motor neuron survival. In a Central South China co-
hort, 4 heterozygous missense variants among 1,005 

novel in ALS at the time of report [22]. 

Additional work referencing the motor neuron condi-
tional knockout corroborated that loss of CLCC1 in 

-

-
text was outside ALS models per se [23]. For CLCC1, 

variants impairing conductance, and motor neu-
CLCC

neurodegeneration; an independent patient cohort 
reports CLCC1 variants that reduce channel cur-
rents, together providing genetic and functional evi-
dence for CLCC1 involvement in ALS. Independent 
loss-of-function studies show that CLCC

-
-

man WT CLCC1 under matched conditions, with un-
changed open probability, directly indicating channel 
hypofunction [25].

GABAergic Transcripts [GAD2, GABRE] in 
Human ALS Spinal Tissue
Bioinformatic analysis comparing gene expression 
in spinal versus oculomotor tissues from control in-
dividuals and sALS patients found that GAD2 and 

ALS patients, whereas their endogenous levels were 
higher in oculomotor tissues relative to spinal tissues. 
The authors interpreted this pattern as aligning with 
the vulnerability of spinal motor systems and the rela-
tive resilience of oculomotor neurons, within the lim-
its of their dataset [15]. The PubMed summary for 
the same study explicitly states the downregulation 

relatively higher endogenous levels in oculomotor tis-
sues, restating the core observation without adding 
claims beyond the original analysis. For GABA-path-
way transcripts in human ALS, spinal tissue analyses 

contrasting with higher expression in oculomotor tis-

documented across human motor systems. Across 

inhibitory-pathway changes sit within the overarch-
ing neuron-down/glia-up polarity, and current cohort-
level resources have not linked these inhibitory tran-
script shifts to clinical phenotypes such as spasticity 
or site of onset [26].

SKELETAL MUSCLE COMPARTMENT: CIC-1/CLCN1 
AND ALTERED G_CL 

CLCN1 (ClC-1) and Skeletal Muscle Chloride 
Conductance
The central role of ClC-1 in setting human skeletal-
muscle g_Cl is well established, and emerging clinical 
pharmacology that targets ClC-1 for neuromuscular 
transmission diseases underscores the translational 
interest in modulating this conductance [27]. In skel-
etal muscle-restricted SOD1 models, ClC-1 protein 
expression and resting chloride conductance (g_Cl) 

-
stored ex vivo by the PKC inhibitor chelerythrine and 
augmented by acetazolamide. These data implicate 
PKC-dependent suppression of ClC-1 activity in the 
ALS muscle phenotype. Mechanistic biophysics out-
side ALS shows acetazolamide directly shifts ClC-1 

ex vivo conductance increases, though clinical ALS 

ex vivo [28]. To date, neither acetazolamide nor PKC 
inhibitors such as chelerythrine have been evaluated 
in randomized or observational ALS patient studies, 
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electrolyte, renal, and ventilatory monitoring, as car-
bonic anhydrase inhibitors are associated with dose-
dependent risks of paresthesias, dysgeusia, polyuria, 

clinical trials likewise do not list ClC-1 modulators 
among tested agents, underscoring the preclinical 
status of this approach [30]. As of August 10, 2025, 
we did not identify any registered ALS interventional 
trials testing acetazolamide or chelerythrine on Clini-

current preclinical status in ALS.

Separate biophysical work in human skeletal muscle 
-

ence the voltage-dependent gating of ClC-1 through 

inhibition, mechanistically supporting the observed in-
crease in chloride conductance upon acetazolamide 
exposure, although that particular study did not ad-
dress ALS tissue [31]. Clinicians should also note that 
carbonic anhydrase inhibitors can precipitate metabol-
ic acidosis and exacerbate CO2 retention in hypercap-
nic respiratory failure, and they carry dose-dependent 
risks such as electrolyte disturbances and nephroli-
thiasis, caveats that are particularly relevant in ALS 
with ventilatory compromise [29]. A focused review of 
therapeutic targets in ALS that included experimental 
data from the same muscle-restricted SOD1 models 
summarized the reduction of ClC-1 expression and 
the restoration of reduced g_Cl by chelerythrine in 
MLC/SOD1

hyperexcitability in ALS contexts [30]. 

GLIAL AND IMMUNE COMPARTMENT

CLIC1 (Chloride Intracellular Channel-1) in Immune 

Proteomic discovery and validation in peripheral 
CLIC1 

-
sociated with ALS in univariate logistic analysis; the 

-
cal controls and reported CLIC1 as part of an ALS-as-
sociated multiprotein biomarker signature [32]. How-
ever, sample sizes were modest and multi-site, and 
prospective replication has not been shown. Outside 

CLIC1 
to the microglial membrane and unmask a CLIC1-
mediated chloride conductance coupled to reactive 
species and cytokine production, directly document-
ing inducible CLIC1

[32]. No independent ALS cohort has yet prospec-
tively reproduced the PBMC CLIC1 signal reported 
by Nardo et al., and contemporary blood-biomarker 

assays over CLIC1 [33].

CLIC1 protein 
and unmasked a CLIC1-mediated chloride conduc-
tance at the plasma membrane, responses that were 

induction of CLIC1 coincided with increased produc-

demonstrating stimulus-dependent CLIC1 expression 
and function in innate immune cells. Although this work 

tissue, it directly documents CLIC1 membrane recruit-

relevant to neurodegeneration [34]. 

showed acute translocation of CLIC1 from cytosol to 

in vitro and in vivo, and linked CLIC1 function to mi-
croglia-mediated neurotoxicity in Alzheimer-related 
paradigms, expanding direct evidence that CLIC1 is 

-

KCNN4 KCA .1/IK  AS A CALCIUM-ACTIVATED 
POTASSIUM CHANNEL IN ALS-RELEVANT CELLS

Microglia isolated from SOD1 G93A mice exhibited in-
creased KCNN4 expression, reported as a 7.54-fold 
rise compared with age-matched wild-type, and phar-

microglial activation markers and modulated disease-
relevant microglial functions in that ALS model, provid-
ing direct evidence that KCNN4 is upregulated in ALS 
microglia and is pharmacologically targetable in vivo [36]. 

Hyperexcitability of motoneurons has been indepen-
dently observed in ALS patients and in iPSC-derived 
motoneurons from familial ALS genotypes, support-
ing the relevance of channels that shape afterhy-
perpolarization and excitability; while these studies 

they document the excitability phenotype to which 
calcium-activated K + channels, including KCa3.1, 
can theoretically contribute. The statements here are 
limited to what is shown in those studies [37]. 

OTHERS
CFTR Splicing as a Prototypical TDP-43–Sensitive 
Chloride Channel Transcript
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skipping of exon 9, a splicing event that produces 

mediated depletion of TDP-43 increased exon 9 in-
clusion in cellular models, demonstrating a direct, 

channel transcript whose splicing is directly regulat-
ed by TDP-43 levels and binding to UG repeats [38, 

splicing or expression in ALS tissues.

CONCLUSIONS

For clinical practice today, no chloride-modulating 
therapy is trial-ready in ALS, and we are not aware 
of any acetazolamide, chelerythrine, or other ClC-1/
KCC2-targeting trials imminently enrolling; routine 
care remains centered on multidisciplinary manage-
ment, ventilatory support, and biomarker awareness 

interventions. For practice, the main human-an-
chored message is the robust neuron-down/glia-up 
polarity in ALS spinal tissue, whereas channel- or 

-

preclinical or debated and should be framed cau-
tiously until replicated in human material or ani-

in embryonic and early presymptomatic SOD1 mice 
but are not yet proven in human motoneurons. In 
skeletal muscle, depressed ClC-1 expression and 
g_Cl with ex vivo rescue by PKC inhibition and ac-
etazolamide are robust preclinical observations. 

SOD1 mice, though the generality of C-bouton re-

-
tion is outstanding despite strong mechanistic sup-

-

biophysics to ALS-linked hypofunction and motor-
neuron conditional loss phenotypes. Human tran-
scriptomics consistently indicates neuronal-to-glial 
polarity with inhibitory-pathway perturbations, and 
animal studies provide a coherent chloride-homeo-
stasis framework via KCC2 decline and depolarized 
E_GABA/Gly. A practical ‘watch-list’ for the next 

-
tion of KCC2
composition control, replication of CLCC1 genetics 
in multi-ancestry cohorts coupled to standardized 

Table 1. Summary of current knowledge and evidence levels on the involvement of chloride channels in ALS pathology

Mechanism/Target Human postmortem In vivo animal Cellular Reference
    

1 1         11

  1        
   

  2

1         
 

      3

1 1       
  1

2 1     -
  

    
 

1           
        23

1        31
  2      

 
  -

 3

       3  -
dechannel transcript  n t st died in  tiss e es 3

a3 1 pre lati n in  icr lia tar eta le 
ith   3    n t pri ar es es 3

‘Yes’ under Human postmortem denotes direct analyses of human CNS tissue; genetic association or blood-based biomarker studies are 
not counted as ‘Human postmortem’.”
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in-human studies only after robust preclinical pack-
ages emerge.
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