Establishment of acenocoumarol pharmacogenetic algorithm including CYP2C9 and VKORC1 genotypes in Bulgarian patients treated with coumarin anticoagulants
DOI:
https://doi.org/10.2478/AMB-2025-0039Keywords:
acenocoumarol, CYP2C9, VKORC1, algorithmAbstract
Introduction: Acenocoumarol, a 4-hydroxycoumarin derivative, is widely prescribed for the primary and secondary prevention of thromboembolic disorders. Maintenance dosing of acenocoumarol is significantly influenced by polymorphic variants in the CYP2C9 and VKORC1 genes. Other critical factors affecting dosing include patient age, diet, body height and weight, and potential drug interactions, particularly with concurrent use of medications such as amiodarone and statins. Objectives: The primary goal of this investigation is to develop a pharmacogenetic dosing algorithm for acenocoumarol based on CYP2C9 and VKORC1 genotypes in Bulgarian patients. Methods: A total of 120 patients, aged 18 to 70 years, undergoing stable acenocoumarol therapy, were enrolled in this study. DNA was extracted using the Chemagic Magnetic Separation Module I (Chemagen AG) following the manufacturer’s protocol, at the Molecular Medicine Center, Medical University – Sofia, Bulgaria. To develop the final clinical and pharmacogenetic dosing algorithms, variables such as age, gender, diagnosis, weight, amiodarone use, and genotypes (CYP2C9*2, CYP2C9*3, and VKORC1-1639G>A) were incorporated into a multiple linear regression (MLR) model. Results: For the analysis, we conducted genotyping of ten polymorphic variants across four genes relevant to acenocoumarol response: CYP2C9*2 (rs1799853), CYP2C9*3 (rs1057310), VKORC1*2A (rs9923231 and rs9934438), VKORC1*2B (rs2884737), VKORC1*3 (rs7294), VKORC1*4 (rs17708472), and APOE (rs7412 and rs429358). Single-component and multiple linear regression analyses were applied to evaluate both genetic and non-genetic factors and their effects on the daily acenocoumarol dose in the patient cohort. The resulting mathematical dosing algorithm is provided below: Optimal daily maintenance dose of acenocoumarol = 5.939 – 0.033*(age in years) – 1.149* (number of VKORC1*2A alleles) + 0.433*(number of VKORC1*3 alleles) – 1.425*(number of CYP2C9*2 alleles) – 0.486*(number of CYP2C9*3 alleles). Conclusion: The multivariate analysis revealed that age and the presence of CYP2C9*2, CYP2C9*3, VKORC1*2A, and VKORC1*3 alleles accounted for 43.8% of the variation in the average daily maintenance dose of acenocoumarol.
References
Schalekamp T, De Boer А. Pharmacogenetics of oral anticoagulant therapy. Curr Pharm Des, 2010; 16(2):187-203.
Kovac MK, Rakicevic LB, Radojkovic DP. Extreme sensitivity to acenocoumarol therapy in patient with both VKORC.-1639 A/A and CYP2C9*1/*3 genotypes. J Thromb Thrombolysis, 2011; 32(3):368-71.
Wolkanin-Bartnik J, Pogorzelska H, Szperl M, et al. Impact of genetic and clinical factors on dose requirements and quality of anticoagulation therapy in Polish patients receiving acenocoumarol: dosing calculation algorithm. Pharmacogenet Genomics, 2013;23(11):611-8.
Van Schie RM, Wessels JA, le Cessie S, et al. Loading and maintenance dose algorithms for phenprocoumon and acenocoumarol using patient characteristics and pharmacogenetic data. Eur Heart J, 2011; 32(15):1909-17.
Rathore SS, Agarwal SK, Pande S, et al. Therapeutic dosing of acenocoumarol: proposal of a population specific pharmacogenetic dosing algorithm and its validation in North Indians. PLoS One, 2012; 7(5):e37844.
Pop TR, Vesa SC, Trifa AP, et al. An acenocoumarol dose algorithm based on a South-Eastern European population. Eur J Clin Pharmacol, 2013.
Markatos CN, Grouzi E, Politou M, et al. VKORC1 and CYP2C9 allelic variants influence acenocoumarol dose requirements in Greek patients. Pharmacogenomics, 2008;9(11):1631-8.
Krishna D, Madhan S, Balachander J, et al. Eff ect of CYP2C9 and VKORC1 genetic polymorphisms on mean daily maintenance dose of acenocoumarol in South Indian patients. Thromb Res, 2013; 131(4):363-7.
Cerezo-Manchado JJ, Rosafalco M, Anton AI, et al. Creating a genotype-based dosing algorithm for acenocoumarol steady dose. Thromb Haemost, 2013;109(1):146-53.
Borobia AM, Lubomirov R, Ramirez E, et al. An acenocoumarol dosing algorithm using clinical and pharmacogenetic data in Spanish patients with thromboembolic disease. PLoS One, 2012;7(7):e41360.
Tzveova, R., A. Dimitrova-Karamfi lova, R. Saraeva, et al., Estimation and validation of acenocoumarol dosing algorithms in Bulgarian patients with cardiovascular diseases. Per Med, 2015;12(3):209-220.
Schwarz UI, Stein CM. Genetic determinants of dose and clinical outcomes in patients receiving oral anticoagulants. Clin Pharmacol Ther, 2006;80(1):7-12.
Kurnik, D., R. Loebstein, H. Halkin, et al. 10 years of oral anticoagulant pharmacogenomics: what difference will it make? A critical appraisal. Pharmacogenomics, 2009;10(12):1955-65.
Buzoianu AD, Militaru FC, Vesa SC, et al. The impact of the CYP2C9 and VKORC1 polymorphisms on acenocoumarol dose requirements in a Romanian population. Blood Cells Mol Dis, 2013;50(3):166-70.
Smires FZ, Habbal R, Moreau C, et al. Eff ect of diff erent genetics variants: CYP2C9*2, CYP2C9*3 of cytochrome P-450
CYP2C9 and 1639G>A of the VKORC1 gene; On acenocoumarol requirement in Moroccan patients. Pathol Biol (Paris), 2013;61(3):88-92.
Smires FZ, Moreau C, Habbal R, et al. Influence of genetics and non-genetic factors on acenocoumarol maintenance dose requirement in Moroccan patients. J Clin Pharm Ther, 2012;37(5): p. 594-8.
Pathare A, Al Khabori M, Alkindi S, et al. Warfarin pharmacogenetics: development of a dosing algorithm for Omani patients. J Hum Genet, 2012;57(10):665-9.
Rusdiana T, Araki T, Nakamura T, et al. Responsiveness to low-dose warfarin associated with genetic variants of VKORC1, CYP2C9, CYP2C19, and CYP4F2 in an Indonesian population. Eur J Clin Pharmacol, 2013;69(3):395-405.
Bazan NS, Sabry NA, Rizk A, et al. Validation of pharmacogenetic algorithms and warfarin dosing table in Egyptian patients. Int J Clin Pharm, 2012;34(6):837-44.
Sconce EA, Khan TI, Wynne HA, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood, 2005;106(7):2329-33.
Saraeva RB, Paskaleva IB, Doncheva E, et al. Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, CYP1A2, CYP3A4, CYP3A5 and ABCB1 gene polymorphisms and dose requirements. J Clin Pharm Ther, 2007;32(6):641-9.
Bodin L, Verstuyft C, Tregouet DA, et al. Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood, 2005;106(1):135-40.
Kaur A, Khan F, Agrawal SS, et al. Cytochrome P450 (CYP2C9*2,*3) & vitamin-K epoxide reductase complex (VKORC1-1639G
Kovac MK, Maslac AR, Rakicevic LB, et al. The c.-1639G>A polymorphism of the VKORC1 gene in Serbian population: retrospective study of the variability in response to oral anticoagulant therapy. Blood Coagul Fibrinolysis, 2010;21(6):558-63.
Schalekamp T, Brasse BP, Roijers JF, et al. VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation. Clin Pharmacol Ther, 2006;80(1):13-22.
Saraeva, R. Study of polymorphic variants in genes for xenobiotic metabolizing enzymes and glycoprotein-P: association with Balkan endemic nephropathy and with response to acenocoumarol drug therapy. PhD thesis. 2008. Medical University – Sofia.
Jose R, Chandrasekaran A, Sam SS, et al. CYP2C9 and CYP2C19 genetic polymorphisms: frequencies in the south Indian population. Fundam Clin Pharmacol, 2005;19(1):101-5.
Visser LE, van Schaik RH, van Vliet M, et al. The risk of bleeding complications in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Thromb Haemost, 2004;92(1):61-6.
Puehringer H, Loreth RM, Klose G, et al. VKORC1 1639G>A and CYP2C9*3 are the major genetic predictors of phenprocoumon dose requirement. Eur J Clin Pharmacol, 2010;66(6):591-8.
Yuan HY, Chen JJ, Lee MT, et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet, 2005;14(13):1745-51.
Arboix M, Laporte JR, Frati ME, et al. Effect of age and sex on acenocoumarol requirements. Br J Clin Pharmacol, 1984;18(4):475-9.
Perez-Andreu V, Roldan V, Anton AI, et al. Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy. Blood, 2009;113(20):4977-9.
Pavani A, Naushad SM, Mishra RC, et al. Retrospective evidence for clinical validity of expanded genetic model in warfarin dose optimization in a South Indian population. Pharmacogenomics, 2012;13(8):869-78.
Sconce E, Avery P, Wynne H, et al. Vitamin K supplementation can improve stability of anticoagulation for patients with unexplained variability in response to warfarin. Blood, 2007;109(6):2419-23.
Teichert M, Eijgelsheim M, Rivadeneira F, et al. A genome-wide association study of acenocoumarol maintenance dosage. Hum Mol Genet, 2009;18(19):3758-68.
Wadelius M, Chen LY, Eriksson N, et al. Association of warfarin dose with genes involved in its action and metabolism. Hum Genet, 2007;121(1):23-34.
Wadelius M, Sorlin K, Wallerman O, et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J, 2004;4(1):40-8.
Gage BF, Eby C, Johnson JA, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther, 2008;84(3):326-31.
Tham LS, Goh BC, Nafziger A, et al. A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther, 2006;80(4):346-55.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 R. Tzveova, R. Saraeva, A. Dimitrova-Karamfilova, G. Nachev, V. Mitev, R. Kaneva, D. Pendicheva-Duhlenska (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You are free to share, copy and redistribute the material in any medium or format under these terms.