Permanent Pacemaker Implantation: Early Post-Implantation Data
DOI:
https://doi.org/10.2478/amb-2024-0002Keywords:
PIPC, PIIINP, permanent pacemakerAbstract
Data on the development of left ventricular dysfunction after permanent pacemaker implantation are available. Myocardial collagen deposition is a well-known mechanism that occurs in left ventricular remodelling. This gave us reason to dynamically monitor the levels of the main molecules involved in collagen synthesis, PIPC (carboxyterminal propeptide of type I procollagen) and PIIINP (amino-terminal propeptide of type III procollagen). Materials and Methods: PIPC and PIIINP levels were studied using enzymelinked immunoassays in plasma from 45 patients (25 men, 20 women, 72.1 ± 9 years) and 46 controls (24 men, 22 women, 71.9 ± 8.7 years) without known cardiovascular diseases (except arterial hypertension, conduction disorder, indication for the procedure) at baseline
(immediately before PPM implantation for patients), at 12 and 24 weeks. Results: There was no difference in baseline levels of PICP and PIIINP between patients and controls (p > 0.05, Table abstract). At week 12, PICP levels increased significantly in patients compared to baseline in controls (p < 0.05, Table abstract). At week 24, values continued to increase and were again significantly higher than baseline in the controls (p < 0.001, Table abstract). At the 12-week follow-up visit, PIIINP values in patients were significantly higher than those at baseline in controls (p < 0.001, Table abstract). At week 24, the values of the patients were still higher
than those of the controls, but the difference was not significant (p > 0.05, Table abstract). Conclusion: This study showed early activation of collagen synthesis < 6 months after PPM (permanent pacemaker) implantation. Due to the selection of patients without concomitant cardiovascular pathology, we have reason to assume that it is a result of the procedure itself and a serious prerequisite for increased collagen deposition in the myocardium.
References
Breur JM, Udink Ten Cate FE et al. Pacemaker therapy in isolated congenital complete atrioventricular block. Pacing. Clin Electrophysiol. 2002; 25:1685-1691.
Vanagt WY, Verbeek XA, Delhaas T et al. The left ventricular apex is the optimal site for pediatric pacing: correlation with animal experience. Pacing Clin Electrophysiol. 2004, 27:837-843.
Healey JS, Toff WD, Lamas GA, et al. Cardiovascular outcomes with atrial-based pacing compared with ventricular pacing: meta-analysis of randomized trials, using individual patient data. Circulation. 2006, 114:11-17.
Boriani G, Tukkie R, Manolis AS et al. MINERVA Investigators. Atrial antitachycardia pacing and managed ventricular pacing in bradycardia patients with paroxysmal or persistent atrial tachyarrhythmias: the MINERVA randomized multicentre international trial. Eur Heart J. 2014, 35:2352-2362.
Burri H, Starck C, Auricchio A et al. EHRA expert consensus statement and practical guide on optimal implantation technique for conventional pacemakers and implantable cardioverter-defibrillators: endorsed by the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), and the Latin-American Heart Rhythm Society (LAHRS). Europace. 2021, doi: 10.1093/europace/euaa367.
Phyo AZZ, Freak-Poli R, Craig H et al. Quality of life and mortality in the general population: a systematic review and metaanalysis. BMC Public Health. 2020, 20(1):1596.
Martinez R, Morsch P, Soliz P, et al. Life expectancy, healthy life expectancy, and burden of disease in older people in the Americas, 1990- 2019: a population-based study. Rev Panam Salud Publica. 2021; 30(9):45-114.
Li C, Li C, Bai W, et al. Value of three- dimensional speckle-tracking in detecting left ventricular dysfunction in patients with aortic valvular diseases. J Am Soc Echocardiogr. 2013; 26:1245-52.
Xu H, Li J, Bao Z, et al. Early Change in Global Longitudinal Strain is an Independent Predictor of Left Ventricular Adverse Remodelling in Patients with Ventricular Apical Pacing. Heart, Lung and Circulation. 2019; 28(12):1780-1787. https://doi.org/10.1016/j.hlc.2018.11.004
Cevher V, Karaaslan M, Akilli R, et al. Evaluation of the relationship between dyssynchrony and myocardial fibrosis markers in patients with cardiac resynchronization therapy. Ann Med Res. 2020; 27(4):1234-40. doi.org/10.1016/j.amjcard.2018.03.159
Strauss D, Selvester R, Wagner G. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am J Cardiol. 2011; 107:927-934. https://doi.org/10.1016/j.amjcard.2010.11.010
Khurshid S, Epstein AE, Verdino RJ, et al. Incidence and predictors of right ventricular pacing-induced cardiomyopathy. Heart Rhythm. 2014; 11:1619-1625. http://dx.doi.org/10.1016/j.hrthm.2014.05.040
Kiehl EL, Makki T, Kumar R, et al. Incidence and predictors of right ventricular pacing-induced cardiomyopathy in patients
with complete atrioventricular block and preserved left ventricular systolic function. Heart Rhythm. 2016; 13:2272-2278.
Bansal R, Parakh N, Gupta A et al. Incidence and predictors of pacemaker-induced cardiomyopathy with comparison between apical and non-apical right ventricular pacing sites. J Interv Card Electrophysiol. 2019, 56:63-70. doi.org/10.1007/s10840-019-00602-2
Hussain M, Furuya-Kanamori L, Kaye G, et al. The Effect of Right Ventricular Apical and Nonapical Pacing on the Short- and Long-Term Changes in Left Ventricular Ejection Fraction: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. Pacing and Clinical Electrophysiology. 2015; 38(9):1121-1136. doi:10.1111/pace.1268110.1111/pace.12681
Cano O, Andres A, Alonso P, et al. Incidence and predictors of clinically relevant cardiac perforation associated with systematic implantation of active-fixation pacing and defibrillation leads: a single-centre experience with over 3800 implanted leads. Europace. 2017; 19:96-102.
Zanon F, Ellenbogen K, Dandamudi G et al. Permanent Hisbundle pacing: a systematic literature review and meta-analysis. Europace. 2018; 20:1819-1826. https://doi.org/10.1093/europace/euy058.
Leong DP, Mitchell AM, Salna I et al. Long-term mechanical consequences of permanent right ventricular pacing: Effect of
pacing site. J Cardiovasc Electrophysiol. 2010; 21:1120-1126.
Lewicka-Nowak E, Dabrowska-Kugacka A, Tybura S et al. Right ventricular apex versus right ventricular outflow tract pacing: Prospective, randomised, long-term clinical and echocardiographic evaluation. Kardiol Pol. 2006; 64:1082-1091.
Flevari P, Theodorakis G, Leftheriotis D. Serum markers of deranged myocardial collagen turnover: Their relation to malignant ventricular arrhythmias in cardioverter-defibrillator recipients with heart failure. Am. Heart J. 2012; 164:530-537. https://doi.org/10.1016/j.ahj.2012.07.006
Cano O, Osca J, Sancho-Tello MJ et al. Comparison of effectiveness of right ventricular septal pacing versus right ventricular apical pacing. Am J Cardiol. 2010; 105:1426–1432.
Ferrario C. Cardiac remodelling and RAS inhibition. Therapeutic Advances in Cardiovascular Disease. 2016; 10(3):162-171.
doi: 10.1177/1753944716642677
Ahmed M, Gorcsan 3rd J, Marek J, et al. Right ventricular apical pacing-induced left ventricular dyssynchrony is associated with a subsequent decline in ejection fraction. Heart Rhythm. 2014; 11:602-8.
Kai H, Mori T, Tokuda K, et al. Pressure overload-induced transient oxidative stress mediates perivascular inflammation and cardiac fibrosis through angiotensin II. Hypertens Res. 2006; 29:711-718.
Jong S, Veen T, Rijen H, et al. Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol, 2011; 57:630-638.
doi: 10.1097/FJC.0b013e318207a35f
Creemers EE, Pinto YM. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res. 2011; 89:265-272. doi:10.1093/cvr/cvq308
Suthahar N, Meijers WC, Silljé HHW, et al. From inflammation to fibrosis-molecular and cellular mechanisms of myocardial
tissue remodelling and perspectives on differential treatment opportunities. Curr Heart Fail Rep. 2017; 14:235-250.
Besler C, Lang D, Urban D et al. Plasma and cardiac galectin-3 in patients with heart failure reflects both inflammation and fibrosis: implications for its use as a biomarker. Circ Heart Fail. 2017;10(3). DOI:10.1161/CIRCHEARTFAILURE.116.003804
Schirone L, Forte M, Palmerio S, et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid Med Cell Longev. 2017; (3920195):1-16.
Ziegler KA, Ahles A, Wille T, et al. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovasc Res. 2018; 114:291-299.
Kang M, Ragan BG, Park JH. Issues in outcomes research: an overview of randomization techniques for clinical trials. J Athl Train. 2008; 43(2):215-221
Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an up- date from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015; 16(3):233-270
Lee M, Dae M, Langberg J, et al. Effects of long-term right ventricular apica pacing on left ventricular perfusion, innervation, function and histology. Journal of the American College of Cardiology. 1994; 24(1):225-232. https://doi.org/10.1016/0735-1097(94)90567-3
Ravassa S, Ballesteros G, Lopez B, et al. Combination of circulating type I collagen-related biomarkers is associated with atrial fibrillation. J. Am. Coll. Cardiol. 2019; 73: 1398-141.
Ducharme A, Frantz S, Aikawa M, et al. Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000; 106:55-62.
Spinale FG: Matrix metalloproteinases: Regulation and dysregulation in the failing heart. Circ Res. 2002; 90:520-530.
Lin L, Lai L, Lin C et al. Left Ventricular Extracellular Matrix Remodeling in Dogs with Right Ventricular Apical Pacing. J Cardiovasc Electrophysiol, 2010; 21(10):1142-1149. doi:10.1111/j.1540-8167.2010.01765.x
Kong P, Christia P, Frangogiannis N. The pathogenesis of cardiac fibrosis. Cell Mol. Life Sci. 2014; 71:549-574. https://doi.
org/10.1007/s00018-013-1349-6
Jarvelainen H, Sainio A, Koulu M, et al. Extracellular matrix molecules: Potential targets in pharmacotherapy. Pharmacol.
Rev. 2009; 61:198-223. doi.org/10.1124/pr.109.001289
Espeland T, Lunde I, Amundsen B, et al. Myocardial fibrosis. Tidsskriftet. 2018; 138. doi: 10.4045/tidsskr.17.1027
Segura A, Frazier O, and Buja L. Fibrosis and heart failure. Heart Fail. Rev. 2014; 19:173-185. doi: 10.1007/s10741-012-9365-4
Prockop D and Kivirikko K. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 1995;
:403-434. doi: 10.1146/annurev.bi.64.070195.002155
Lopez B, Gonzalez A, Ravassa S et al. Circulating biomarkers of myocardial fibrosis: the need for a reappraisal. J. Am. Coll. Cardiol. 2015; 65:2449-2456. doi: 10.1016/j.jacc.2015.04.026
Uchinaka A, Yoshida M, Tanaka K, et al. Overexpression of collagen type III in injured myocardium prevents cardiac systolic dysfunction by changing the balance of collagen distribution. The Journal of Thoracic and Cardiovascular Surgery. 2018; 156(1):217-226. https://doi.org/10.1016/j.jtcvs.2018.01.097
Riekki R, Harvima, JI, Ristile J, Oikarinen A. The production of collagen and the activity of mast-cell chymase increase in human skin after irradiation therapy. Experimental Derma- Experimental Dermatology. 2004; 13(6):364-371. https://doi.org/10.1111/j.0906-
2004.00164.
Haukipuro K, Risteli L, Kairaluoma M, et al. Aminoterminal propeptide of type III procollagen in healing wound in humans. Ann Surg 1987; 206:752-756. doi: 10.1097/00000658-198712000-00011
Zile M, Desantis S, Baicu C et al. Plasma biomarkers that reflect determinants of matrix composition identify the presence of left ventricular hypertrophy and diastolic heart failure. Circ Heart Fail 2011; 4:246-256. https://doi.org/10.1161/
CIRCHEARTFAILURE.110.958199
Michalski B, Trzcinski P, Kupczynska K et al, The differences in the relationship between diastolic dysfunction, selected biomarkers and collagen turn-over in heart failure patients with preserved and reduced ejection fraction. Cardiol J. 2017; 24:35-42. DOI: 10.5603/CJ.a2016.0098
Duprez D, Gross M, Kizer J, et al. Predictive value of collagen biomarkers for heart failure with and without preserved ejection fraction: MESA (Multi – Ethnic Study of Atherosclerosis). J Am Heart Assoc. 2018; 7:e007885. https://doi.org/10.1161/JAHA.117.007885
Löfsjögård J, Thomas K, Javier D et al. Biomarkers of collagen type I metabolism are related to B-type natriuretic peptide, left ventricular size, and diastolic function in heart failure. J Cardiovasc Med, 2014; 15(6):463-469; doi: 10.2459/01. JCM.0000435617.86180.0
Flevari P, Leftheriotis D, Fountoulaki K, et al. Long-term nonoutflow septal versus apical right ventricular pacing: Relation to left ventricular dyssynchrony. Pacing Clin Electrophysiol. 2009; 32:354-362.
Velagaleti R, Vasan R. Heart failure in the twenty-first century: is it a coronary artery disease or hypertension problem? Cardiol Clin. 2007; 25:487-495. doi.org/10.1016/j.ccl.2007.08.010
McMurray J, Adamopoulos S, Anker S et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012; 33:1787-1847. DOI: 10.1093/eurheartj/ehs104
Downloads
Published
Issue
Section
License
Copyright (c) 2024 I. Yoncheva, D. Biserov, M. Negreva (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You are free to share, copy and redistribute the material in any medium or format under these terms.