Protective effects of quercetin, curcumin and resveratrol in an in vitro model of doxorubicin-induced cardiotoxicity
DOI:
https://doi.org/10.2478/AMB-2025-0061Keywords:
doxorubicin, cardiotoxicity, curcumin, quercetin, resveratrol, Rat H9c2 cardiomyoblastsAbstract
Introduction: Over the past two decades, drug-induced cardiotoxicity has resulted in the withdrawal of several drugs, including prenylamine, rofecoxib, and levomethadyl acetate, while others like rosiglitazone remain available only under restricted conditions. However, some cardiotoxic drugs, like doxorubicin (DOX), are still used due to their potent antitumor activity despite their dose-dependent cardiotoxicity. This cardiotoxicity, often caused by lipid peroxidation and reactive oxygen species (ROS), can be mitigated by natural substances like quercetin (QR), curcumin (CRC), and resveratrol (RES), which have notable antioxidant and cardioprotective effects. Aim: This study aimed to evaluate the potential of QR, RES, and CRC to enhance the viability of H9c2 cardiomyocytes in an in vitro model of doxorubicin-induced cardiotoxicity. Materials and Methods: H9c2 cells were treated with doxorubicin (0.25 μM and 1 μM) and varying concentrations of QR, RES, and CRC (0.01 μM, 0.1 μM, 1 μM, 2.5 μM, 5 μM, 10 μM) for 24 and 48 h. Cell viability was assessed using the MTT assay to determine the protective effects of the natural antioxidants on H9c2 cell line. Results: Our data demonstrated that QR and CRC significantly improved the viability of H9c2 cells in the DOX-induced cardiotoxicity model of treatment with 0.25 μM DOX (24 h). At these conditions, RES also showed protective cell viability effects, but it was not effective at the injury with higher DOX concentration (1 μM, 24 h). Conclusions: This study highlights the in vitro protective effects of QR and CRC in reducing DOX-induced cardiotoxicity in H9c2 cardioblast cells, most probably attributed to their well-established antioxidant effects.
References
`Mohan UP, Tirupathi Pichiah PB, Iqbal STA, Arunachalam S. Mechanisms of doxorubicin-mediated reproductive toxicity – a review. Reprod. Toxicol. 2021;102:80-9. https://doi.org/10.1016/j.reprotox.2021.04.008
Belger C, Abrahams C, Imamdin A, Lecour S. Doxorubicin-induced cardiotoxicity and risk factors. IJC Heart Vasc. 2024;50:101332. https://doi.org/10.1016/j.ijcha.2024.101332
Linders AN, Dias IB, López Fernández T, et al. A review of the pathophysiological mechanisms of doxorubicin-induced cardiotoxicity and aging. npj Aging. 2024;10(1):9. https://doi.org/10.1038/s41514-024-00126-4
Wu L, Zhang Y, Wang G, Ren J. Molecular Mechanisms and Therapeutic Targeting of Ferroptosis in Doxorubicin-Induced Cardiotoxicity. JACC Basic Transl Sci. 2024. https://doi.org/10.1016/j.jacbts.2024.02.001
Rawat PS, Jaiswal A, Khurana A, et al. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother 2021;139:111708. https://doi.org/10.1016/j.biopha.2021.111708
Sheibani M, Azizi Y, Shayan M et al. Doxorubicin-induced cardiotoxicity: an overview on pre-clinical therapeutic approaches. Cardiovasc Toxicol. 2022;22(4):292-310. https://doi.org/10.1007/s12012-022-09647-2
Wenningmann N, Knapp M, Ande A, et al. Insights into doxorubicin-induced cardiotoxicity: molecular mechanisms, preventive strategies, and early monitoring. Mol Pharmacol. 2019;96(2):219-32. https://doi.org/10.1124/mol.119.116979
Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339(13):900-5. https://doi.org/10.1056/NEJM199809243391301
Songbo M, Lang H, Xinyong C, et al. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 2019;307:41-8. https://doi.org/10.1016/j.toxlet.2019.02.011
Chen RC, Xu XD, Zhi Liu X, et al. Total Flavonoids from Clinopodium chinense (Benth.) O. Ktze Protect against Doxorubicin-Induced Cardiotoxicity In Vitro and In Vivo. Evid Based Complement Alternat Med. 2015;2015(1):472565. https://doi.org/10.1155/2015/472565
Lipshultz SE, Alvarez JA, Scully RE. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart. 2008;94(4):525-33. https://doi.org/10.1136/hrt.2007.134345
Rochette L, Guenancia C, Gudjoncik A, et al. Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol Sci. 2015;36(6):326-48. https://doi.org/10.1016/j.tips.2015.03.002
Damiani RM, Moura DJ, Viau CM, et al. Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol. 2016;90:2063-76. https://doi.org/10.1007/s00204-016-1790-4
Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by plant-derived polyphenols and nanomaterials. Environ Res. 2023:116896. doi:10.1016/j.envres.2023.116896
Zhang J, Cui X, Yan Y, et al. Research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity. Am J Transl Res. 2016;8(7):2862.
Zhang Q, Wu L. In vitro and in vivo cardioprotective effects of curcumin against doxorubicin-induced cardiotoxicity: A systematic review. J Oncol. 2022;2022(1):7277562. doi:10.1155/2022/7277562
Kuang Z, Ge Y, Cao L, et al. Precision treatment of anthracycline-induced cardiotoxicity: an updated review. Curr Treat Options Oncol. 2024;25(8):1038–54. doi:10.1007/s11864-024-01058-5
Caspani F, Tralongo AC, Campiotti L, et al. Prevention of anthracycline-induced cardiotoxicity: a systematic review and meta-analysis. Intern Emerg Med. 2021;16(2):477–86. doi:10.1007/s11739-021-02790-5
Hertog M, Bueno-de-Mesquita HB, Fehily AM, et al. Fruit and vegetable consumption and cancer mortality in the Caerphilly Study. Cancer Epidemiol Biomarkers Prev. 1996;5(9):673–7. doi:10.1002/ijc.2910500202
Kalender Y, Kaya S, Durak D et al.. Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environ Toxicol Pharmacol. 2012;33(2):141–8. doi:10.1016/j.etap.2011.11.005
Annapurna A, Reddy CS, Akondi RB, Rao SR. Cardioprotective actions of two bioflavonoids, quercetin and rutin, in experimental myocardial infarction in both normal and streptozotocin-induced type I diabetic rats. J Pharm Pharmacol. 2009;61(10):1365–74. doi:10.1211/jpp/61.10.0003
Glässer G, Graefe E, Struck F, et al. Comparison of antioxidative capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites. Phytomedicine. 2002;9(1):33–40. doi:10.1078/0944-7113-00006
Voycheva C, Popova T, Slavkova M, et al. Doxorubicin and quercetin double loading in modified MCM-41 lowered cardiotoxicity in H9c2 cardioblast cells in vitro. Bioengineering. 2023;10(6):637. doi:10.3390/bioengineering10060637
Li S-z, Li K, Zhang J-h, Dong Z. The effect of quercetin on doxorubicin cytotoxicity in human breast cancer cells. Anti-Cancer Agents Med Chem. 2013;13(2):352–5. doi:10.2174/18715206113130200352
Dong Q, Chen L, Lu Q, Sharma S, et al. Quercetin attenuates doxorubicin cardiotoxicity by modulating B mi-1 expression. Br J Pharmacol. 2014;171(19):4440–54. doi:10.1111/bph.12810
Dorostkar H, Haghiralsadat BF, Hemati M, et al. Reduction of doxorubicin-induced cardiotoxicity by co-administration of smart liposomal doxorubicin and free quercetin: in vitro and invivo studies. Pharmaceutics. 2023;15(7):1920. doi:10.3390/pharmaceutics15071920
Hashish FE, ElBatsh MM, El-Odemi MH, et al. Possible protective effects of quercetin on doxorubicin-induced cardiotoxicity in rats. Menoufia Med J. 2021;34(1):333–9. doi:10.4103/mmj.mmj_16_20
Aziz TA. Cardioprotective effect of quercetin and sitagliptin in doxorubicin-induced cardiac toxicity in rats. Cancer Manag Res. 2021;2349–57. doi:10.2147/CMAR.S318141
El-Shetry ES, Ibrahim IA, Kamel AM, Abdelwahab OA. Quercetin mitigates doxorubicin-induced neurodegenerative changes in the cerebral cortex and hippocampus of rats: insights to DNA damage, inflammation, synaptic plasticity. Tissue Cell. 2024;87:102313. doi:10.1016/j.tice.2024.102313
Thandapilly SJ, Wojciechowski P, Behbahani J, et al. Resveratrol prevents the development of pathological cardiac hypertrophy and contractile dysfunction in the SHR without lowering blood pressure. Am J Hypertens. 2010;23(2):192–6. doi:10.1038/ajh.2009.219
Toklu HZ, Şehirli Ö, Erşahin M, et al. Resveratrol improves cardiovascular function and reduces oxidative organ damage in the renal, cardiovascular and cerebral tissues of two-kidney, one-clip hypertensive rats. J Pharm Pharmacol. 2010;62(12):1784–93. doi:10.1211/jpp.62.12.0009
Chen L, Sun X, Wang Z, et al. Resveratrol protects against doxorubicin-induced cardiotoxicity by attenuating ferroptosis through modulating the MAPK signaling pathway. Toxicol Appl Pharmacol. 2024;482:116794. doi:10.1016/j.taap.2024.116794
Dolinsky VW, Rogan KJ, Sung MM, et al. Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. Am J Physiol Endocrinol Metab. 2013;305(2):E243–53. doi:10.1152/ajpendo.00284.2013.
Hu LF, Lan HR, Li XM, Jin KT. A systematic review of the potential chemoprotective effects of resveratrol on doxorubicin-induced cardiotoxicity: focus on the antioxidant, antiapoptotic, and anti-inflammatory activities. Oxid Med Cell Longev. 2021;2021:2951697. doi:10.1155/2021/2951697
Gu J, Hu W, Zhang D. Resveratrol, a polyphenol phytoalexin, protects against doxorubicin-induced cardiotoxicity. J Cell Mol Med. 2015;19(10):2324–8. doi:10.1111/jcmm.12647
Lou Y, Wang Z, Xu Y, et al. Resveratrol prevents doxorubicin-induced cardiotoxicity in H9c2 cells through the inhibition of endoplasmic reticulum stress and the activation of the Sirt1 pathway. Int J Mol Med. 2015;36(3):873-80. doi:10.3892/ijmm.2015.2234.
Gu J, Hu W, Song ZP, et al. Resveratrol-induced autophagy promotes survival and attenuates doxorubicin-induced cardiotoxicity. Int Immunopharmacol. 2016;32:1–7. doi:10.1016/j.intimp.2016.01.016.
Hu Z. Exploring the mechanism of curcumin in the treatment of doxorubicin-induced cardiotoxicity based on network pharmacology and molecular docking technology. Medicine. 2024;103(7):e36593. doi:10.1097/MD.0000000000036593
Mohammed HS, Hosny EN, Khadrawy YA, et al. Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165665. doi:10.1016/j.bbadis.2020.165665
Jain A, Rani V. Assessment of herb-drug synergy to combat doxorubicin induced cardiotoxicity. Life Sci. 2018;205:97–106. doi:10.1016/j.lfs.2018.03.029
Swamy AV, Gulliaya S, Thippeswamy A, et al. Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats. Indian J Pharmacol. 2012;44(1):73–7. doi:10.4103/0253-7613.92628
Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol. 1998;124(3):425–7. doi:10.1038/sj.bjp.0702134
Imbaby S, Ewais M, Essawy S, Farag N. Cardioprotective effects of curcumin and nebivolol against doxorubicin-induced cardiac toxicity in rats. Hum Exp Toxicol. 2014;33(8):800–13. doi:10.1177/0960327114539642
Xu X, Chen K, Kobayashi S, et al. Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J Pharmacol Exp Ther. 2012;341(1):183–95. doi:10.1124/jpet.112.197089
Shabalala S, Muller C, Louw J, Johnson R. Polyphenols, autophagy, and doxorubicin-induced cardiotoxicity. Life Sci. 2017;180:160–70. doi:10.1016/j.lfs.2017.04.007
Purgatorio R, Boccarelli A, Pisani L, et al. A critical appraisal of the protective activity of polyphenolic antioxidants against iatrogenic effects of anticancer chemotherapeutics. Antioxidants. 2024;13(1):133. doi:10.3390/antiox13010133
Sergazy S, Shulgau Z, Fedotovskikh G, et al. Cardioprotective effect of grape polyphenol extract against doxorubicin-induced cardiotoxicity. Sci Rep. 2020;10(1):14720. doi:10.1038/s41598-020-71570-9
Razavi-Azarkhiavi K, Iranshahy M, Sahebkar A, et al. The protective role of phenolic compounds against doxorubicin-induced cardiotoxicity: a comprehensive review. Nutr Cancer. 2016;68(6):892–917. doi:10.1080/01635581.2016.1212795
Sahu R, Dua TK, Das S, et al. Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-κB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis. Food Chem Toxicol. 2019;125:503–519. doi:10.1016/j.fct.2019.01.040
Hescheler J, Meyer R, Plant S, et al. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res. 1991;69(6):1476–86. doi:10.1161/01.RES.69.6.1476
Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185-229. doi:10.1124/pr.56.2.3
Goodman J, Hochstein P. Generation of free radicals and lipid peroxidation by redox cycling of adriamycin and daunomycin. Biochem Biophys Res Commun. 1977;77(2):797–803. doi:10.1016/0006-291X(77)90446-4
Gille L, Nohl H. Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity. Free Radic Biol Med. 1997;23(5):775-82. doi:10.1016/S0891-5849(97)00264-0
Ma W, Wei S, Zhang B, Li W. Molecular mechanisms of cardiomyocyte death in drug-induced cardiotoxicity. Front Cell Dev Biol. 2020;8:434. doi:10.3389/fcell.2020.00434
Koss-Mikołajczyk I, Todorovic V, Sobajic S, et al. Natural products counteracting cardiotoxicity during cancer chemotherapy: The special case of doxorubicin, a comprehensive review. Int J Mol Sci. 2021;22(18):10037. doi:10.3390/ijms221810037
Yi X, Wang Q, Zhang M, et al. Ferroptosis: A novel therapeutic target of natural products against doxorubicin-induced cardiotoxicity. Biomed Pharmacother. 2024;178:117217. doi:10.1016/j.biopha.2024.117217
Angeloni C, Spencer J, Leoncini E, et al. Role of quercetin and its in vivo metabolites in protecting H9c2 cells against oxidative stress. Biochimie. 2007;89(1):73-82. doi:10.1016/j.biochi.2006.06.006
Yang C, Zhu Q, Chen Y, et al. Review of the protective mechanism of curcumin on cardiovascular disease. Drug Design,Development and Therapy. 2024;165-92. doi:10.2147/DDDT.S344720
Gu J, Fan Yq, Zhang Hl, et al. Resveratrol suppresses doxorubicin-induced cardiotoxicity by disrupting E2F1 mediated autophagy inhibition and apoptosis promotion. Biochem Pharmacol. 2018;150:202-13. doi:10.1016/j.bcp.2018.02.017
Rezaei-Sadabady R, Eidi A, Zarghami N, Barzegar A. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif Cells Nanomed Biotechnol. 2016;44(1):128-34. doi:10.3109/21691401.2015.1026690
Yang F, Jiang X, Song L, et al. Quercetin inhibits angiogenesis through thrombospondin-1 upregulation to antagonize human prostate cancer PC-3 cell growth in vitro and in vivo. Oncol Rep. 2016;35(3):1602-10. doi:10.3892/or.2016.4513
Nouri A, Heidarian E, Amini-Khoei H, et al. Quercetin through mitigation of inflammatory response and oxidative stress exerts protective effects in rat model of diclofenac-induced liver toxicity. J Pharm Pharmacogn Res. 2019;7(3):200-12.
Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat Rev Mol Cell Biol. 2024;25(1):13-33.
Zhou Y, Qian C, Tang Y, et al. Advance in the pharmacological effects of quercetin in modulating oxidative stress and inflammation related disorders. Phytotherapy Res. 2023;37(11):4999-5016. https://doi.org/10.1002/ptr.7966
Russo GL, Russo M, Spagnuolo C. The pleiotropic flavonoid quercetin: from its metabolism to the inhibition of protein kinases in chronic lymphocytic leukemia. Food Funct.. 2014;5(10):2393-401. https://doi.org/10.1039/C4FO00413B
Iqbal M. Flavonoid-Mediated Modulation of CYP3A Enzyme and P-Glycoprotein Transporter: Potential Effects on Bioavailability and Disposition of Tyrosine Kinase Inhibitors. Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health: IntechOpen; 2020. doi:10.5772/intechopen.92712
Liu X, Ye F, Wu J, et al. Signaling proteins and pathways affected by flavonoids in leukemia cells. Nutr. Cancer. 2015;67(2):238-49. https://doi.org/10.1080/01635581.2015.989372
Liu JP, Chen W, Schwarer AP, Li H. Telomerase in cancer immunotherapy. Biochim. Biophys. Acta Rev. Cancer. 2010;1805(1):35-42. https://doi.org/10.1016/j.bbcan.2009.09.001
Zhu P, Yang M, He H, et al. Curcumin attenuates hypoxia/reoxygenation‑induced cardiomyocyte injury by downregulating Notch signaling. Mol. Med. Rep.. 2019;20(2):1541-50. https://doi.org/10.3892/mmr.2019.10371
Downloads
Published
Issue
Section
License
Copyright (c) 2025 B. Stoyanov, D. Stefanova, R. Bogdanova, V. Tzankova (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
You are free to share, copy and redistribute the material in any medium or format under these terms.